If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-8t-7=0
a = 1; b = -8; c = -7;
Δ = b2-4ac
Δ = -82-4·1·(-7)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{23}}{2*1}=\frac{8-2\sqrt{23}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{23}}{2*1}=\frac{8+2\sqrt{23}}{2} $
| -u-9=u+45 | | -7a-4=a+108 | | t-78=-t-6 | | -9n-6=n+214 | | --8j-5=j+382 | | -n+5=n+59 | | 5e+7=27+9÷9 | | 4x+(1/3X)=100 | | -3a+4=a+128 | | q-260=-6q-8 | | r+105=-r+5 | | c-399=-8c-3 | | 7x-(9x+14)=2-(4x-3) | | 4x+1/3X=100 | | -22=2f | | 9+4p-3=7p+12-2p | | -5c+7=c+73 | | b+195=-4b+5 | | p-104=-p-8 | | -9=5+c | | -a-5=a+77 | | a-65=-a-3 | | y+86=-2y+5 | | -b+5=b+27 | | a=+359=-6a+9 | | x+27=-x+5 | | 12+1/5r=2r+1 | | b-97=-b-7 | | 3/2=x/14 | | 25x=6x+1 | | 256+r^2=r^2+16r+64 | | -c-5=c+81 |